
Adaptive semi-transparent ray tracing with depth of field

Kevin O’Connor
Rensselaer Polytechnic Institute

oconnk6@rpi.edu

Dimitar Dimitrov
Rensselaer Polytechnic Institute

newbrict@gmail.com

ABSTRACT
We present a combination of techniques to implement a
feature-rich ray tracer that applies adaptive sampling to op-
timize performance. We build these features upon existing
methods in which we experiment with techniques to opti-
mally combine them in a ray tracer.

Keywords
Computer Graphics, ray tracing, adaptive supersampling,
refraction, depth of field, soft shadows

1. RELATED WORK
Our methods are strongly built upon existing work from
several different authors using various techniques.

Cook proposes a solution to the artifacts created with uni-
form sampling [1]. The method to fix this is through nonuni-
form sampling.

The basis of our ray tracer is based upon the work of Cook
et al. [2] on their distributed ray tracer. Their work focuses
on distributed rays in the direction of the analytic function
they sample in order to reduce the ”fuzziness” in existing ray
tracing. They further provide methods for calculating depth
of field, penumbras, translucency.

For adaptive supersampling, Whitted [3] presented an ap-
proach for doing such by subdividing the pixel and comput-
ing average color. An ε range was used to compare whether
or not a color was significantly different and requiring fur-
ther subdivision.

Yauney [4] did a similar approach for his project in the
Spring of 2012 and sampled a few different techniques to
Whitted’s [3] work in order to implement a fast ray tracer.

Figure 1: Adaptive supersampling for AA visualized using
green pixels where additional rays were cast. Noise leads to
regions with aliasing not being perfectly outlined in green

2. ADAPTIVE SUPERSAMPLING
One of the main focuses of our project was to optimize our
ray tracer in order to reduce the amount of rays that must be
casted into the scene. This was an important feature due to
our addition of depth of field which adds considerable more
ray casts. Therefore we implemented methods published by
Whitted [3] in order to reduce wasteful ray casts.

2.1 Antialiasing

Figure 2: Using the corner-point method for AA sampling
we were able to perfectly target aliased regions using an ε
of 0.01 leading to a 500x500 render with a max depth of 64
AA samples being rendered in 67.6 seconds



Building upon Whitted [3], we first shoot a ray directly into
the center of a pixel and record the color there. We then
shoot four rays in the corner boundaries of the pixel and
average their color. Given a defined ε (determined by the
user), we see if the difference between the color at the cen-
ter pixel differs by more than ε to that color calculated from
the corners. If it does not then we immediately return the
average color of the corners. If it does differ by more than
ε we then iterate where i = 2 . . . n. At each iteration we
shoot 2i rays stratified randomly across the pixel and aver-
age their color. We then recompute the difference against
the last iteration (or the four corners for the first iteration)
and compare it against ε. The user defines n to be the depth
at which they desire to stop if the ε check has not yet passed.

Our first iteration of this algorithm omitted the corner check
and only went to the first iteration in which the points are
chosen stratified randomly in the pixel. What we found
was that there was noise in the resulting image where AA
occurred as seen in Figure 1.

We then switched the the corner-point method to help bet-
ter identify points where a majority of the pixel might be
one color with a slight variation in one of the corners be-
ing missed when randomly sampled. Our result from this
method can be seen in Figure 2 in which we were able to
perfectly identified aliased regions and only shot more than
5 rays in those regions. All other regions of the image re-
ceived exactly 5 rays.

2.2 Soft Shadows
Our initial soft shadow implementation rendered the penum-
bras using the methods developed by Cook et al. [2]. The
unoptimized version develops the penumbras by tracing a
ray from a point in object space to the light source many
times and averaging the light contribution based on where
or not the ray hit the light or an blocking piece of geometry.

To optimize this we applied the basic methodology from
Whitted [3] for antialiasing to this situation. Given a point
in object space we shoot four rays into the corners of the
light source. If there is a consensus in the rays of either
all hitting the light or all not hitting the light source then
we know the point is not the penumbra and can be either
entirely in shade or entirely unshaded. We demonstrate this
targeting in Figure 3 where we target the penumbra regions
of the scene.

Once we have targeted the regions in the penumbras we
shoot n rays, determined by user preference, to the light
source and average their shaded values. This means that
we only cast four rays for all pixels not in penumbras and
exactly n for pixels in the penumbras.

In our scene in Figure 3 we were able to render the scene with
128 shadow samples in approximately 129.38 seconds. For
comparison, the render without any shadow samples took
36.1 seconds. The unoptimized render using 128 shadow
samples took 309.68 seconds.

We attempted to use a similar method as we did with an-
tialiasing in order to implement early stopping to reduce the
amount of rays we shot. This method, however, generates a

Figure 3: Our implementation targets the penumbra regions,
colored in blue, to determine where additional rays must be
traced. On the right we after the render of a ray tracing
with 128 shadow samples rendered in 129.38 seconds.

lot of noise in the resulting output. We attempted to bal-
ance an ε value and the numbers of rays being casted, but
couldn’t come to a balance that we found satisfactory.

(a) η = 1 (b) η = 1.000293
1.05

(c) η = 1.000293
1.1

(d) η = 1.000293
1.2

(e) η = 1.000293
1.33

(f) η = 1.000293
1.5

Figure 4: Various renderings of a refractive sphere with dif-
ferent values for η.

3. REFRACTION
Refraction is the phenomenon that occurs when a light wave
passes between two objects with differing indices of refrac-



(a) (b)

(c)

Figure 5: 5a has incorrect values for both N and η. 5b has
an incorrect value for N. 5c has an incorrect value for η.

tion. Figure 4 shows our implementation of refraction with
various indices of refraction.

Implementing refraction is deceptively complex. Given the
incident ray I, surface normal N, and the ratio of the indi-
cies of refraction η = ni

nr
, We use GLM’s implementation of

snell’s law to compute the direction of the refracted ray R.
The order of refractive media is important for both η and
N. In our implementation we check if we are within an ob-
ject and invert both η and N if that is the case. Figure 5
shows the results of incorrect incorrectly setting the values
for η and N. The results of having both N and η incorrect
are very similar to those with only an incorrect value for N.
The black areas show where total internal reflection would
occur erroneously since the variables were incorrect. The
trickiest case by far is having a correct value for N but an
incorrect value for η which produces convincing results with
a low tolerance for the camera angle.

For semi-reflective refractive objects we simply use a con-
tribution ratio C. We compute all reflection and refraction
at the same time and weight their contributions to the final
sample color by C and (1−C) respectively. Figure 6 shows
two renderings using this method.

4. DEPTH OF FIELD
Depth of field is an effect commonly seen in photography and
cinematography which produces blurry images with objects
at the focal length being in focus. In the physical world
depth of field is caused by the diameter of the aperture, the
focal length of the lens, and the camera’s distance to each
object in the scene. To simulate depth of field we assume
our camera is the lens, and our focal length r is the distance
between the camera and the point of interest. We use a
Monte-Carlo approach by uniformly sampling a spherical

Figure 6: The left image was rendered with C = 0.1, the
right with C = 0.5. Both were rendered using a reflective
depth of 3. You can that the light source was internally
reflected from the bottom right of each image.

Figure 7: The image on the left was sampled over a blur
radius of 2, the image on the right was sampled over a blur
radius of 5.

surface patch of points at the blur radius, which is analogous
to the circle of confusion in physical models. We rotate the
camera around the point of interest at a radius r for each
sample, and average the color per pixel.

Producing smooth blurry depth requires a very high number
of samples, and in turn takes a very long amount of time to
render. Also if you increase the blur radius you have to
increase the number of samples to produce similar quality
images Figure 7 shows just how dramatically a change in the
blur radius can affect the smoothness of an image.

All of our features work together nicely, Figure 8 is a render-
ing using adaptive sampling for both antialiasing and shad-
ows, with refraction, and depth of field.

It’s very important that you return the camera to its original
position after each sample, this is a mistake we made early
on which produced some very interesting results shown in
Figure 9.

5. LIMITATIONS
Our method of adaptive supersampling is robust enough to
handle most renders that would be thrown at it. However,
there are conditions in which there may be a tiny object that
might be missed by ray tracing through the corners. We were
not able to create a realistic scene where this error would
occur, but it is still possible. However, this is a compromise
we were willing to settle for in exchange for the performance
increase.



Figure 8: An rendering combining all of our techniques. 4
shadow, and antialias samples, reflective depth of 3, 70 depth
of field samples, a blur radius of 5, and η = 1.000293

1.5
. The

rendering took 6 hours to complete.

Figure 9: An incorrect repositioning of the camera caused
the image plane to be spread along the cameras path.

Figure 10: Both images were rendered with 64 antialias sam-
ples, 1 shadow sample, reflective depth of 3, 5 depth of field
samples, a blur radius of 2, and η = 1.000293

1.5
. The right

image is the same as the right but with debugging pixels
turned on to show where antialiasing occurred.

Since our method for adaptive soft shadows uses a similar
method as antialiasing, it is possible that for an occluder in
the center of the pixel, but not the corners, to be missed.
Given a big enough light source, this could very much be a
concern and it’s something that we would have liked to ex-
pand on. For our current scenes we were not able to see any
artifacts from this compromise. Given more time we would
have liked to spend more time finding a way to implement
early stopping to reduce the number of rays being casted for
soft shadows. We also started work on glossy reflections and
refractions, but they were not finished in time for the paper.

Adding depth of field samples on top of our adaptive su-
per sampling is very time consuming. We contemplated the
idea of mapping the adaptive sampling ε value to a blur ra-
dius based raised cosine probability density function around
the point of interest. This would minimize wasted sampling
done on inherently blurry parts of the image. Figure 10
shows how even blurry parts of the image are sampled for
antialiasing with our current implementation.

6. CONCLUSION
Overall we were able to complete all the parts of the project
that we had planned on finishing. We spent about a week
and a half on the actual implementation of our methods and
building scenes to test with. Dimitar mostly focused on the
depth of field and refraction implementation while Kevin
worked on the adaptive antialiasing and soft shadows. We
feel that we were successful in our implementation and were
ultimately able to render very photorealistic renders in a
reasonable amount of time.

7. REFERENCES
[1] R. L. Cook. Stochastic sampling in computer graphics.

ACM Trans. Graph., 5(1):51–72, Jan. 1986.

[2] R. L. Cook, T. Porter, and L. Carpenter. Distributed
ray tracing. SIGGRAPH Comput. Graph.,
18(3):137–145, Jan. 1984.

[3] T. Whitted. An improved illumination model for shaded
display. Commun. ACM, 23(6):343–349, June 1980.

[4] G. Yauney. Kind of quick ray tracing. 2012.


